
Local-first apps using 
Postgres logical replication

Building a high-scalability sync engine 
with dynamic partial replication

Conrad Hofmeyr
Co-Founder & CEO, JourneyApps

Postgres Conference 2024
April 19, 2024



1. What is local-first? Why local-first?

2. Why we focused on Postgres & SQLite

3. System design, architecture & implementation 

4. Postgres logical replication challenges & solutions

Local-first apps using Postgres logical replication
Building a high-scalability sync engine with dynamic partial replication



Client app

Local-first (some overlap with “offline-first”) is an architecture where 
app code works directly with a client-side embedded database which 
automatically syncs with a backend database in the background.

Reads and writes go to the local database first.

What is local-first?

Postgres database

upload

download

Local database

read write



Why local-first app architecture?
For app developers For end-users

Simple state management

Simplified backend: Reduced 
API development burden

Lower backend compute load, 
dependency, and cost

Instantly reactive UX

Apps are always available:
Work offline

Real-time multi-user 
collaboration



Why we focused on Postgres 

Full-stack platform for 
offline-first industrial apps

Spin-off stand-alone 
sync engine



Why we focused on Postgres 
Database Type Sync Layer Client DatabaseBackend Database

NoSQL Atlas Device Sync

NoSQL PouchDB.replicate()

SQL ?



Choosing Postgres & SQLite
● SQL as a language remains more universal and well-known 

than NoSQL syntaxes.

● SQL is very effective for advanced queries e.g. aggregations.

● SQLite* is hard to beat on the client-side:

○ Performance, flexibility & advanced functionality 
(aggregations, joins, advanced indexing, JSON)

○ Battle-tested (a trillion SQLite databases are in active use) 

* Our architecture allows swapping SQLite with other client-side databases.



Design, architecture 
& implementation 

PowerSync Postgres<>SQLite sync engine



System design, architecture & implementation 
a. Design objectives
b. High-level architecture
c. Implementing dynamic partial replication 
d. Syncing local writes back to Postgres
e. Server-authoritative architecture: No CRDTs needed
f. Guaranteeing consistency
g. Guaranteeing data integrity



Design objectives
1. Treat the Postgres database as sacrosanct: 

○ Work with standard Postgres databases, non-invasively. 
Require minimal-to-no changes to schema, configuration, etc.

○ Don’t bypass the developer’s existing business logic, authorization and validation. 
Don’t write directly to their Postgres database.

2. Dynamic partial replication. 

○ Flexibly sync only the needed data to each user. 

3. Low maintenance. 

○ For example: schema and data migrations.

4. Strong consistency guarantees.



Read/download path vs. write/upload path:

High-level architecture

Lo
gi

ca
l R

ep
lic

at
io

n

Existing 
App Backend 

publishes to
streams partial data

queues and uploads writes toapplies writes to

Client App:
PowerSync 
Client SDK

SQLite

PowerSync 
Service

Postgres



System design, architecture & implementation 
a. Design objectives
b. High-level architecture
c. Implementing dynamic partial replication 
d. Syncing local writes back to Postgres
e. Server-authoritative architecture: No CRDTs needed
f. Guaranteeing consistency
g. Guaranteeing data integrity



Implementing dynamic partial replication
Objective: Get relevant subsets of data to users.

Naive approach: Allow clients to make “arbitrary” database queries 
and attempt to keep their result sets in sync.

● However: Any client can go offline and come back online at any later time:
○ Would need to sync the delta for their specific queries, 

relative to their specific current sync state.
Problematic for high-scalability: 

○ Large database, high write volume, large number of concurrent users.



Our chosen design: 

● Allow for pre-defining “buckets” of data
● Buckets of data can be shared between users where applicable.
● Efficiently track changes to data in the buckets

Implementing dynamic partial replication



Dynamic partial replication: How it works
1. Developer defines declarative ‘sync rules’ with SQL syntax, grouping 
data into buckets. Buckets can reference parameters from the client.

Parameter query: 
Select all parameters 
(can include querying 

data from elsewhere in 
Postgres)

Data queries: Select data for this bucket

Each bucket has 
unique identifier

Access parameters from 
auth payload (JWT) 



Dynamic partial replication: How it works
2. Based on sync rules, replicate and pre-process data from Postgres:
Replication initially performed by taking a snapshot of tables defined in the Sync Rules 
(with regular SQL queries), then incrementally (with logical replication)
● Checkpoints keep track of Postgres LSNs in replication stream (more in this later)

Postgres

PowerSync Service

Buckets defined in sync rules



2. Based on sync rules, replicate and pre-process data from Postgres:
Pluggable storage is used in the PowerSync Service to store operation history.

● Effectively a rebuildable persistent cache outside of Postgres, keeping it clean.

Dynamic partial replication: How it works

Postgres

PowerSync Service

Buckets defined in sync rules



2. Based on sync rules, replicate and pre-process data from Postgres:
● The recent history of operations on each row is stored.

○ Operation history is compacted for performance.

● Rows are represented as JSON.

● Operations indexed by “operation ID” (op_id), a strictly incrementing integer ID

○ Allows ordered list of operations to be queried efficiently 

Dynamic partial replication: How it works



3. Authenticate users using JWTs.

Dynamic partial replication: How it works

Existing 
App Backend 

auth using JWT

retrieve JWT

Client App:
PowerSync 
Client SDK

PowerSync 
Service

1

2



4. Streaming sync of bucket data from PowerSync Service to clients:
For buckets that apply to the user: Continuously stream any operations added.

Dynamic partial replication: How it works

PowerSync Service

Buckets defined in sync rules

User A

User B
…

PowerSync 
Client SDK



5. On the client, data is persisted to SQLite
● Type mapping from Postgres → SQLite
● Replicated data is stored in schemaless format in SQLite.
● The application defines a client-side schema with tables, columns and indices. 
● The schema is applied as 

SQLite views on top of the 
schemaless data.

● Live reactive query hooks:
Update UI when data changes.

Dynamic partial replication: How it works
Client App:
Client SDK

SQLite



System design, architecture & implementation 
a. Design objectives
b. High-level architecture
c. Implementing dynamic partial replication 
d. Syncing local writes back to Postgres
e. Server-authoritative architecture: No CRDTs needed
f. Guaranteeing consistency
g. Guaranteeing data integrity



● Writes to the local SQLite database also placed in an upload queue.
● Developer defines their own function for uploading these changes to their 

backend, and from there, writing to Postgres. (Client SDK handles retries.)
○ Allows existing business logic, fine-grained authorization, validations and server-side 

integrations to be honored.

Writes to SQLite: Syncing back to Postgres

Existing 
App Backend queues and uploads writes to

applies writes to

Client App:
Client SDK

SQLite
Postgres



System design, architecture & implementation 
a. Design objectives
b. High-level architecture
c. Implementing dynamic partial replication 
d. Syncing local writes back to Postgres
e. Server-authoritative architecture: No CRDTs needed
f. Guaranteeing consistency
g. Guaranteeing data integrity



Server-authoritative: No CRDTs needed
● CRDTs are special data structures where changes can be merged 

in any order, and each replica converges to the same state.

● Alternative to CRDTs: always merge changes in the same order.

● Our system uses an architecture where there is an authoritative 
source of truth regarding the global order of operations 

○ Derived from the Postgres logical replication stream.

● Therefore, our system does not need CRDTs on a protocol level.



Server-authoritative: No CRDTs needed
Provides simplicity and customizability for the developer:

● The developer’s backend can reject and accept changes as needed, 
and clients converge to the server’s authoritative state.

● The developer’s backend can apply custom conflict resolution 
(including using CRDT data structures stored as blob data in Postgres)



System design, architecture & implementation 
a. Design objectives
b. High-level architecture
c. Implementing dynamic partial replication 
d. Syncing local writes back to Postgres
e. Server-authoritative architecture: No CRDTs needed
f. Guaranteeing consistency
g. Guaranteeing data integrity



Guaranteeing consistency 
● We keep track of write checkpoints on the server. 

○ Checkpoints have an associated “operation ID” (op_id) and Postgres LSN.

● Local client-side writes to the SQLite database:

○ Are applied on top of the last checkpoint received from the server 
(so that querying SQLite includes local mutations not yet uploaded)

○ Are placed into the upload queue

● The client retrieves the latest checkpoint from the server after it has finished 
uploading writes (i.e. after the data is written to the Postgres database and the 
client’s upload queue is empty)

○ The client then updates its local state to match the server state.



System design, architecture & implementation 
a. Design objectives
b. High-level architecture
c. Implementing dynamic partial replication 
d. Syncing local writes back to Postgres
e. Server-authoritative architecture: No CRDTs needed
f. Guaranteeing consistency

g. Guaranteeing data integrity



Guaranteeing data integrity
● The client and server can compute a per-bucket checksum.
● Detecting data corruption: If the server and client checksums don’t 

match, the client will re-download the bucket.

PowerSync Service Client App:
Client SDK

SQLite



Tying it all together
The sync system enables a local-first app architecture: The app reads/writes directly from/to 
a client-side SQLite database, which automatically syncs with a Postgres database in the 
background.

Lo
gi

ca
l R

ep
lic

at
io

n

Existing 
App Backend 

publishes to
streams partial data

queues and uploads writes toapplies writes to

Client App:
PowerSync 
Client SDK

SQLite

PowerSync 
Service

Postgres

read write

Bucket Data Storage
based on Sync Rules

(dynamic partial replication config)



Logical replication 
challenges & solutions



Logical replication challenges & solutions
Logical replication was originally meant to be used for Postgres-to-Postgres 
replication in a way that is compatible over different Postgres versions and 
databases, replicating row data. (vs. physical replication: byte-by-byte)

There were some challenges to making the PowerSync model/architecture 
compatible with logical replication assumptions, for example:

1. Handling schema/DDL changes
2. LSNs that overlap between transactions
3. Accessing TOASTed values 
4. Handling different row identifier permutations



1. Handling schema/DDL changes
What is provided with Postgres logical replication:

● DDL changes do not get published with Postgres logical replication. 
● Type identifiers in messages can be used to identify column types.

Our design objective: We want the PowerSync system to be as 
low-maintenance as possible, including regarding schema changes.



1. Handling schema/DDL changes
We did a number of things in pursuit of this design objective:

● PowerSync protocol & client-side database storage are schemaless.

○ On the client, SQLite views are applied on top of schemaless JSON data.

● Sync Rules can apply some transformations to Postgres data 
during replication.

○ Developer can use this for some backwards-compatibility: 
Allowing clients to keep using an older schema.

This reduces the surface area affected by schema changes.



1. Handling schema/DDL changes
Various Postgres schema change scenarios are detected wherever possible, 
and either automatically handled or documented the manual action required: 

DROP table Developer action required

CREATE table Automatic

DROP and re-CREATE table Automatic 

RENAME table Automatic Re-sync the entire table

REPLICA IDENTITY changes Automatic Re-sync the entire table

Column changes Developer action required

Publication changes Developer action required

There are some fundamental limitations, e.g. GENERATED STORED values are not published in the 
logical replication stream.



2. LSNs that overlap between transactions
We need a monotonically increasing “operation ID” (op_id) sequence, and initially 
used the Postgres LSNs to derive op_id. However, we moved away from that 
architecture to using an auto-incremented integer, for these reasons:

1. LSNs are not guaranteed to be monotonically increasing: Transaction commits are 
always in sequence in the WAL, but operations inside each transaction can have 
LSN ranges overlapping with other transactions.
a. (For our checkpoint system, we keep track of the commit LSNs.)

2. We want to architecturally support sharded databases where each Postgres 
instance has its own LSN sequence that has to be merged into a singular 
op_id sequence

3. When we reprocess sync data, we need to continue with the same op_id 
sequence, while the LSN sequence does not get reset.



3. Accessing TOASTed values 🍞
● TOAST (The Oversized Attribute Storage Technique):

If a value exceeds the page size (8 kB by default), it is compressed, 
and if still >= page size, it is stored in the TOAST table and a pointer 
is put in the original table.

● In the logical replication stream, a TOASTed value is only published 
if the value has changed. Otherwise, the field has an ‘unchanged’ flag.

● In order to be able to access current field values regardless of TOAST, 
we store an additional copy of the current value of any field that we 
replicate (stateful stream processing)



4. Handling different row identifier permutations

Replica Identity Postgres Treatment PowerSync Treatment

DEFAULT Records primary key. Use the primary key.

FULL Records all columns. Generate ID from all columns.

USING INDEX Records columns referenced 
by named index.

Generate ID from columns 
referenced by named index.

NOTHING No information recorded Generate a random ID.
(Postgres blocks updating or deleting rows.)

● Postgres has options in terms of row identifier information recorded in the 
logical replication stream, through REPLICA IDENTITY.

● We implemented support for all the different permutations for developer 
convenience (but we recommend DEFAULT, i.e. using the primary key)



We want to help advance local-first adoption
Local-first has several benefits for developers and end-users.

Our architecture provides for Postgres<>anything bidirectional sync

Client app

Postgres database

upload

download

Local database

read write



Thank You
Conrad Hofmeyr

Co-Founder & CEO, JourneyApps

conrad@journeyapps.com 
twitter.com/cahofmeyr
www.powersync.com 

mailto:conrad@journeyapps.com
http://www.powersync.com

