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I’m Sean Loiselle.

Live in Washington Heights.

Started at “The View” in 2019.

Wrote a bunch of the SQL layer in the early days, now on the storage team.
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What is MZ?
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What are materialized views?

5

SELECT
    p.product_category,
    s.store_location,
    SUM(sales.amount) AS total_sales,
    AVG(sales.unit_price) AS average_price,
    COUNT(DISTINCT sales.customer_id) AS unique_customers
FROM
    sales
INNER JOIN products p ON sales.product_id = p.product_id
INNER JOIN stores s ON sales.store_id = s.store_id
WHERE
    sales.sale_date BETWEEN '2023-11-21' AND '2023-11-22'
GROUP BY
    p.product_category,
    s.store_location
ORDER BY
    total_sales DESC;



What are materialized views?
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CREATE MATERIALIZED VIEW expensive_query AS SELECT
    p.product_category,
    s.store_location,
    SUM(sales.amount) AS total_sales,
    AVG(sales.unit_price) AS average_price,
    COUNT(DISTINCT sales.customer_id) AS unique_customers
FROM
    sales
INNER JOIN products p ON sales.product_id = p.product_id
INNER JOIN stores s ON sales.store_id = s.store_id
WHERE
    sales.sale_date BETWEEN '2023-11-21' AND '2023-11-22'
GROUP BY
    p.product_category,
    s.store_location
ORDER BY
    total_sales DESC;



What if they weren’t stale?
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REFRESH MATERIALIZED
VIEW

incremental
computation



What if they weren’t stale?
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Materialize is born
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git ls-files | xargs wc -l

MZ: 335727

PostgreSQL: 917966



More than just views…
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Inside MZ
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Timely and Differential
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A little more about time
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Timely and Differential
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Executing dataflows
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Executing dataflows
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Executing dataflows
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Diagram
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PG + MZ
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PostgreSQL replication
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Ingesting data
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Ingesting data
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Ingesting data
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Not so fast…

24



25



The WAL doesn’t contain everything
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The WAL doesn’t contain everything
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--primary worker begins txn
BEGIN READ ONLY ISOLATION LEVEL REPEATABLE READ;
--replication slot returns consistent LSN
CREATE_REPLICATION_SLOT mz_slot123 TEMPORARY 
LOGICAL "pgoutput" USE_SNAPSHOT;
--create exportable snapshot
SELECT pg_export_snapshot();

and then…

--secondary workers begin txns
BEGIN READ ONLY ISOLATION LEVEL REPEATABLE READ;
--enter exportable snapshot
SET TRANSACTION SNAPSHOT…;



Rewind requests
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// A request to rewind a snapshot taken at `snapshot_lsn` to the initial LSN of the 
replication

// slot. This is accomplished by emitting `(data, 0, -diff)` for all updates `(data, lsn, 
diff)`

// whose `lsn <= snapshot_lsn`. By convention the snapshot is always emitted at LSN 0.

struct RewindRequest {

   /// The table OID that should be rewound.

   oid: u32,

   /// The LSN that the snapshot was taken at.

   snapshot_lsn: MzOffset,

}



REPLICA IDENTITY FUD
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From PG 14:

If the table does not have any suitable key, then it can be set to replica identity “full”, 
which means the entire row becomes the key. This, however, is very inefficient and should 
only be used as a fallback if no other solution is possible.



Relation messages are inadequate
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Relation

...

Int16

Number of columns.

Next, the following message part appears for each column included in 
the publication (except generated columns):

String
Name of the column.



The truth is in the source code
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Primary keepalive message (B)
Byte1('k')
Identifies the message as a sender keepalive.

Int64

The current end of WAL on the server.

...



The Correctness Bug™
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No negative multiplicities
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for (datum, time, diff) in data {

    // SQL is underpowered

assert!(diff >= 0);

}
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RE: Logical Replication - Should Destination Table Columns Be Defined With Default Value

I also thought that default value on the subscriber side are immaterial. However, with the case I showed 
without having default value on subscriber side it get null when the following occurs:
1. Table was created with two columns on publisher and subscriber side
2. Data inserted into this table
3. A third column is added to table with default value on publisher side, but without default value on 
subscriber side

n.b. these are two ALTER commands
4. The default value column has value for existing rows on publisher, but null on the subscriber side.
5. Doing refresh publication etc. does not help and the column on subscriber side remains with nulls

https://www.postgresql.org/message-id/DB9PR07MB71802D47D944DAA9A8AB688FCB929%40DB9PR07MB7180.eurprd07.prod.outlook.com
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…adding a column with a constant default value no longer means that each row of the 
table needs to be updated when the ALTER TABLE statement is executed. Instead, the 
default value will be returned the next time the row is accessed, and applied when the 
table is rewritten, making the ALTER TABLE very fast even on large tables.

However, we cannot reproduce our customer’s behavior on PG 14…but it turns out that 
they were using PG 15….
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CREATE TABLE t (a INT, b INT);

INSERT INTO t VALUES (1, 2), (3, 4);

--because of fast alter, this looks like (1, 2, null)...

ALTER TABLE t ADD COLUMN c INT NOT NULL DEFAULT 1;

--now set up the MZ source

UPDATE t SET c = a;

--the old value of C that gets propagated through logical replication is NULL



Correctness
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And here is the bug fix Nikhil put together.

https://www.postgresql.org/message-id/CAPWqQZTEpZQamYsGMn6ZDRvVywwpVPiKH6OY4KSgA%2BNmeqFNzA%40mail.gmail.com


Q&A



 Thank You


