
MZ + PG
Source internals

Hello

2

I’m Sean Loiselle.

Live in Washington Heights.

Started at “The View” in 2019.

Wrote a bunch of the SQL layer in the early days, now on the storage team.

What is MZ?

3

1
2

3

Inside MZ

PG+MZ

The Correctness Bug™
time alloing4

5 Q&A

What is MZ?

4

What are materialized views?

5

SELECT
 p.product_category,
 s.store_location,
 SUM(sales.amount) AS total_sales,
 AVG(sales.unit_price) AS average_price,
 COUNT(DISTINCT sales.customer_id) AS unique_customers
FROM
 sales
INNER JOIN products p ON sales.product_id = p.product_id
INNER JOIN stores s ON sales.store_id = s.store_id
WHERE
 sales.sale_date BETWEEN '2023-11-21' AND '2023-11-22'
GROUP BY
 p.product_category,
 s.store_location
ORDER BY
 total_sales DESC;

What are materialized views?

6

CREATE MATERIALIZED VIEW expensive_query AS SELECT
 p.product_category,
 s.store_location,
 SUM(sales.amount) AS total_sales,
 AVG(sales.unit_price) AS average_price,
 COUNT(DISTINCT sales.customer_id) AS unique_customers
FROM
 sales
INNER JOIN products p ON sales.product_id = p.product_id
INNER JOIN stores s ON sales.store_id = s.store_id
WHERE
 sales.sale_date BETWEEN '2023-11-21' AND '2023-11-22'
GROUP BY
 p.product_category,
 s.store_location
ORDER BY
 total_sales DESC;

What if they weren’t stale?

7

REFRESH MATERIALIZED
VIEW

incremental
computation

What if they weren’t stale?

8

Materialize is born

9

git ls-files | xargs wc -l

MZ: 335727

PostgreSQL: 917966

More than just views…

10

Inside MZ

11

Timely and Differential

12

A little more about time

13

Timely and Differential

14

Executing dataflows

15

Executing dataflows

16

Executing dataflows

17

Diagram

18

PG + MZ

19

PostgreSQL replication

20

Ingesting data

21

Ingesting data

22

Ingesting data

23

Not so fast…

24

25

The WAL doesn’t contain everything

26

The WAL doesn’t contain everything

27

--primary worker begins txn
BEGIN READ ONLY ISOLATION LEVEL REPEATABLE READ;
--replication slot returns consistent LSN
CREATE_REPLICATION_SLOT mz_slot123 TEMPORARY
LOGICAL "pgoutput" USE_SNAPSHOT;
--create exportable snapshot
SELECT pg_export_snapshot();

and then…

--secondary workers begin txns
BEGIN READ ONLY ISOLATION LEVEL REPEATABLE READ;
--enter exportable snapshot
SET TRANSACTION SNAPSHOT…;

Rewind requests

28

// A request to rewind a snapshot taken at `snapshot_lsn` to the initial LSN of the
replication

// slot. This is accomplished by emitting `(data, 0, -diff)` for all updates `(data, lsn,
diff)`

// whose `lsn <= snapshot_lsn`. By convention the snapshot is always emitted at LSN 0.

struct RewindRequest {

 /// The table OID that should be rewound.

 oid: u32,

 /// The LSN that the snapshot was taken at.

 snapshot_lsn: MzOffset,

}

REPLICA IDENTITY FUD

29

From PG 14:

If the table does not have any suitable key, then it can be set to replica identity “full”,
which means the entire row becomes the key. This, however, is very inefficient and should
only be used as a fallback if no other solution is possible.

Relation messages are inadequate

30

Relation

...

Int16

Number of columns.

Next, the following message part appears for each column included in
the publication (except generated columns):

String
Name of the column.

The truth is in the source code

31

Primary keepalive message (B)
Byte1('k')
Identifies the message as a sender keepalive.

Int64

The current end of WAL on the server.

...

The Correctness Bug™

32

No negative multiplicities

33

for (datum, time, diff) in data {

 // SQL is underpowered

assert!(diff >= 0);

}

34

35

36

37

38

39

40

RE: Logical Replication - Should Destination Table Columns Be Defined With Default Value

I also thought that default value on the subscriber side are immaterial. However, with the case I showed
without having default value on subscriber side it get null when the following occurs:
1. Table was created with two columns on publisher and subscriber side
2. Data inserted into this table
3. A third column is added to table with default value on publisher side, but without default value on
subscriber side

n.b. these are two ALTER commands
4. The default value column has value for existing rows on publisher, but null on the subscriber side.
5. Doing refresh publication etc. does not help and the column on subscriber side remains with nulls

https://www.postgresql.org/message-id/DB9PR07MB71802D47D944DAA9A8AB688FCB929%40DB9PR07MB7180.eurprd07.prod.outlook.com

41

…adding a column with a constant default value no longer means that each row of the
table needs to be updated when the ALTER TABLE statement is executed. Instead, the
default value will be returned the next time the row is accessed, and applied when the
table is rewritten, making the ALTER TABLE very fast even on large tables.

However, we cannot reproduce our customer’s behavior on PG 14…but it turns out that
they were using PG 15….

42

CREATE TABLE t (a INT, b INT);

INSERT INTO t VALUES (1, 2), (3, 4);

--because of fast alter, this looks like (1, 2, null)...

ALTER TABLE t ADD COLUMN c INT NOT NULL DEFAULT 1;

--now set up the MZ source

UPDATE t SET c = a;

--the old value of C that gets propagated through logical replication is NULL

Correctness

43

And here is the bug fix Nikhil put together.

https://www.postgresql.org/message-id/CAPWqQZTEpZQamYsGMn6ZDRvVywwpVPiKH6OY4KSgA%2BNmeqFNzA%40mail.gmail.com

Q&A

 Thank You

