
Top 5 PostgreSQL

Query Tuning Tips!
Senior Database Consultant

Welcome

Janis Griffin

Who Am I?

Twitter® - @DoBoutAnything

– Current – 30+ Years in Oracle®,
DB2®, ASE, SQL Server®,
MySQL, PostgreSQL

– DBA and Developer

Specialize in Performance Tuning

Customers Common Question: How do I tune it?

Janis.Griffin@quest.com

quest.com | confidential Where Next Meets Now.

• Challenges of Tuning

– Monitor Wait Time

– Review the Explain Plan

– Gather Object Information

– Find the Driving Table

– Engineer out the Stupid

• Several Case Studies

Agenda

quest.com | confidential Where Next Meets Now.

• SQL Tuning is Hard

– Who should tune – DBA or Developer

– Which SQL to tune

• Requires Expertise in Many Areas

– Technical – Plan, Data Access, SQL Design

– Business – What is the Purpose of SQL?

• Tuning Takes Time

– Large Number of SQL Statements

– Each Statement is Different

• Low Priority in Some Companies

– Vendor Applications

– Focus on Hardware or System Issues

• Never Ending

Challenges of Tuning

quest.com | confidential Where Next Meets Now.

• Wait Event examples in Appendix

Monitor Wait Time – Statement Level

quest.com | confidential Where Next Meets Now.

• EXPLAIN Command - https://www.postgresql.org/docs/current/sql-explain.html

– Gives estimated costs (start_up / total cost) as it doesn’t actually run it

• EXPLAIN analyze - what is explain cost

– Executes the query so actual run time statistics are shown

Review the Explain Plan

https://www.postgresql.org/docs/current/sql-explain.html
https://scalegrid.io/blog/postgres-explain-cost/

quest.com | confidential Where Next Meets Now.

• Find Expensive Operators

– Examine costs and row counts (shows the # of rows processed – not what it evaluated)

▪ Gives an estimate of resources (CPU and disk I/O)

– Look for Seq Scan or Index Scan

• Review the Filter Conditions

– Know which step filtering predicate is applied

• Review Join Methods

– Nested Loops join: Usually efficient for smaller data sets

– Hash Join: Useful on very large data sets (DW)

– Merge Join: Efficient for larger data sets

Examine the Explain Plan

quest.com | confidential Where Next Meets Now.

• Identify Common Mistakes

– Using functions on indexed columns

▪ In WHERE, ON & HAVING clause

▪ Create a Functional Index instead

> Create index lower_title_idx on film(lower(title));

– Nested views

▪ One view calling or joining to other views

– Use of cursors or row by row processing

• Missing or Poor Indexing

• Problems Outside of the Plan

– Missing or stale statistics

– Database misconfiguration

– No database constraints

Explain Plan - Look for Common Mistakes

quest.com | confidential Where Next Meets Now.

• Understand objects in explain plans

– Table Definitions & Sizes

▪ Is it a View?

> Get underlying definition

▪ Number of Rows / Partitioning?

– Examine Columns in Where Clause

▪ Know the Cardinality of columns

▪ Is there Data Skew

> Consider partial index

▪ Are there indexes on the join / filtering columns

– Index & Constraint Definitions

▪ Entity Relationship Diagrams (ERDs) can help

• Statistics Collection Configuration

– Analyze / Vacuum

Gather Object Information

quest.com | confidential Where Next Meets Now.Where Next Meets Now.

Case Study

Who registered yesterday
for SQL Tuning Class?

1

quest.com | confidential Where Next Meets Now.

PREPARE billing (timestamp,timestamp) as

SELECT s.fname, s.lname, r.signup_date

FROM test.student s

 INNER JOIN test.registration r ON s.student_id = r.student_id

 INNER JOIN test.class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'

AND r.signup_date BETWEEN $1 AND $2

AND r.cancelled ='N';

Who registered yesterday for SQL Tuning

quest.com | confidential Where Next Meets Now.

Explain (Analyze, Buffers)

PKs / FKs only

quest.com | confidential Where Next Meets Now.

Review Table & Indexes

of Rows

class 1,000

student 10,000

registration 79,981

quest.com | confidential Where Next Meets Now.

Find the Driving table

• Need to know the size of the actual data sets in each step

– In Joins (Right, Left, Outer)

– What are the filtering predicates

– When is each filtering predicate applied

o Try to filter earlier rather than later

• Compare size of final result set with # of rows at each step

• Find the driving table

o To reduce buffers (I/O)

SELECT s.fname, s.lname, r.signup_date

FROM student s

 INNER JOIN registration r ON s.student_id = r.student_id

 INNER JOIN class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'

AND r.signup_date BETWEEN $1 AND $2

AND r.cancelled = 'N'

Joins

Filtering

Predicates

quest.com | confidential Where Next Meets Now.

SQL Diagramming
• Great Book “SQL Tuning” by Dan Tow

– Oldie but a goodie that teaches SQL Diagramming

– http://www.singingsql.com

registration

student class

5

1

30

1

5%

.2%

select count(1) from registration where cancelled = 'N'
and signup_date between ‘2022-12-10 00:00' and ‘2022-12-11 00:00'

4344 / 79,981 * 100 = 5.43%
 5.43

select count(1) from class where name = 'SQL TUNING'

 2 / 1000 * 100 = .2

quest.com | confidential Where Next Meets Now.

Drive the Query with Class
• CREATE INDEX cl_name ON test.class(name);

quest.com | confidential Where Next Meets Now.

Why Seq Scan on Registration?

• Can’t use Primary Key as class_id is not left leading column

• Not much difference in throughput – 6k vs 5.4k (685 vs 695 buffers)

– Needs more information to drive by Class

quest.com | confidential Where Next Meets Now.

Add Index on Registration (Class_id)

• create index REG_ALT on test.registration(class_id);

quest.com | confidential Where Next Meets Now.

Add Covering Index on Registration

• create index REG_ALT on test.registration(class_id, student_id, signup_date) include (cancelled);

Shared Hits

IX 1: 695

IX 2: 328

1X 3: 183

quest.com | confidential Where Next Meets Now.Where Next Meets Now.

Case Study

Flights by City & Day of Week

2

quest.com | confidential Where Next Meets Now.

SQL Taking the Most Time

quest.com | confidential Where Next Meets Now.

CREATE OR REPLACE PROCEDURE

 get_pop_flight(_city varchar,_beg_date date, _end_date date,_day_of_week varchar, INOUT pop_flights refcursor)

LANGUAGE 'plpgsql'

AS $BODY$

BEGIN

OPEN pop_flights FOR SELECT o.carrier, uc.description AS carrier_name, o.fl_date,o.fl_num,o.tail_num

 ,ao.description AS origin_airport,co.Description AS origin_city ,ad.description AS destination_airport

 ,cd.Description AS destination_city ,w.Description Day_of_Wed

FROM public.t_ontime o

INNER JOIN L_UNIQUE_CARRIERS AS uc ON uc.Code = o.UNIQUE_CARRIER

 INNER JOIN L_AIRPORT_ID AS ao ON ao.Code = o.ORIGIN_AIRPORT_ID

 INNER JOIN L_AIRPORT_ID AS ad ON ad.Code = o.DEST_AIRPORT_ID

 INNER JOIN L_CITY_MARKET_ID AS co ON co.Code = o.ORIGIN_CITY_MARKET_ID

 INNER JOIN L_CITY_MARKET_ID AS cd ON cd.Code = o.DEST_CITY_MARKET_ID

 INNER JOIN L_WEEKDAYS AS w ON w.Code = o.DAY_OF_WEEK

where fl_date BETWEEN _beg_date AND _end_date

 AND co.Description = _city

 AND w.Description = _day_of_week;

END;

$BODY$;

Flights by City & Day of Week

BEGIN;
CALL public.get_pop_flight('Little Rock, AR','2015-02-01','2015-0 16','Sunday','pop_flights');
fetch all in "pop_flights";
COMMIT;

quest.com | confidential Where Next Meets Now.

• US DOT - On-time Performance

Star Schema

L_UNIQUE_CARRIERS: 1620
L_AIRPORT_ID: 6438
L_CITY_MARKET_ID: 5823
L_WEEKDAYS: 8
T_ONTIME: 6784044

http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236&DB_Short_Name=On-Time

quest.com | confidential Where Next Meets Now.

Examine the Explain Plan

2.07seconds

quest.com | confidential Where Next Meets Now.

Find the Driving Table

select count(1) from t_ontime where fl_date

 between '2015-12-01 00:00:00.000' and'2015-12-31 00:00:00.000‘;

select 479230.00 / 5819067.00 * 100 = 8.23

select count(1) from L_CITY_MARKET_ID where description = 'Chicago, IL'

select 1.00 / 5760.00 * 100 = 0.017

select count(*) from L_WEEKDAYS where description = 'Friday'

select 1.00 / 8 * 100 = 12.50

O

.02%

uc

co

w

ao

13%

Filtering Selectivity

ad

cd

8%

quest.com | confidential Where Next Meets Now.

• Create index on T_ONTIME & L_CITY_MARKET_ID

– Create index CO_MARKET_DESC on public.L_CITY_MARKET_ID(description);

– create index OCO_MARKET_DESC on public.T_ONTIME(origin_city_market_id);

– create unique index PK_CITY_MARKET on public.L_CITY_MARKET_ID(code);

Tune the Query

quest.com | confidential Where Next Meets Now.

quest.com | confidential Where Next Meets Now.

• Create index OCO_MARKET_DESC_FL_DATE on public.T_ONTIME(origin_city_market_id, fl_date);

Adjust the index

quest.com | confidential Where Next Meets Now.

\

quest.com | confidential Where Next Meets Now.

• No Primary or Foreign Keys! (See appendix for more Stupid Things)

Engineer out the Stupid

Add PKs & FKs

quest.com | confidential Where Next Meets Now.

quest.com | confidential Where Next Meets Now.

Best Average Time

quest.com | confidential Where Next Meets Now.

Entire Tuning Effects on Workload

Summary
• Monitor Wait time

• Review the Execution Plan

– Look for Costly Steps

• Gather Object Info

• Find the Driving Table

• Engineer out the Stupid

– Common mistakes

• Compare your Tuning Results

– Brag about Yourself … No one else will!

• Q & A

quest.com | confidential Where Next Meets Now.

• Selecting unnecessary columns or using wildcards (*) in Select clause

– Adding extra columns can slow down query performance & increase the amount of memory (I/O) & CPU needed

• Using ambiguous table aliases

– Using ambiguous table aliases leads to confusion & can cause errors when writing complex queries

– Use clear, meaning full aliases

• Not filtering data - not using a WHERE clause

– Not filtering data, by not using a WHERE clause, can return large amounts of data and cause network latency when
returning that data to the client

– Always include a WHERE clause in your query

– Databases are best at filtering data so don’t forward to job to the client

• Not using appropriate JOINs

– Using inefficient JOINs in a query can lead to performance

– Nested Loops are good for large/small table lookups, Merge & Hash joins for large/large tables

More Stupid Things Other_bad_things_about_postgresql

https://www.reddit.com/r/PostgreSQL/comments/4nz9of/what_are_some_bad_things_about_postgresql/

quest.com | confidential Where Next Meets Now.

• Not using appropriate indexes

– Not using appropriate indexes in a query can lead to slow query performance & increased database workload

– Try using SQL Diagraming techniques to find the best index to drive the least amount of data required

• Data type mismatch

– Comparing columns with wrong data types can lead to errors or incorrect results

– Make sure that the data types of the columns being compared or combined in the query are compatible

More Stupid Things

quest.com | confidential Where Next Meets Now.

• RDS for PostgreSQL wait events

• Aurora PostgreSQL wait events

• https://www.postgresql.org/docs/current/monitoring-stats.html

– Blocking Locks Query
select pid,
 usename,
 pg_blocking_pids(pid) as blocked_by,
 query as blocked_query
from pg_stat_activity
where cardinality(pg_blocking_pids(pid)) > 0;

– Waiting to read data from the client (either too much data or client is slow)
select datname, pid, usename, application_name, wait_event,
 wait_event_type, query_start, state_change, state, query
from pg_catalog.pg_stat_activity;

Wait Events

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/PostgreSQL.Tuning.concepts.summary.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraPostgreSQL.Tuning.concepts.summary.html
https://www.postgresql.org/docs/current/monitoring-stats.html

	REQUIRED SLIDES
	Slide 1
	Slide 2
	Slide 3: Agenda
	Slide 4: Challenges of Tuning
	Slide 7: Monitor Wait Time – Statement Level
	Slide 8: Review the Explain Plan
	Slide 9: Examine the Explain Plan
	Slide 10: Explain Plan - Look for Common Mistakes
	Slide 11: Gather Object Information
	Slide 12: Case Study Who registered yesterday for SQL Tuning Class?
	Slide 13: Who registered yesterday for SQL Tuning
	Slide 14: Explain (Analyze, Buffers)
	Slide 15: Review Table & Indexes
	Slide 16: Find the Driving table
	Slide 17: SQL Diagramming
	Slide 18: Drive the Query with Class
	Slide 19: Why Seq Scan on Registration?
	Slide 20: Add Index on Registration (Class_id)
	Slide 21: Add Covering Index on Registration
	Slide 22: Case Study Flights by City & Day of Week
	Slide 23: SQL Taking the Most Time
	Slide 24: Flights by City & Day of Week
	Slide 25: Star Schema
	Slide 26: Examine the Explain Plan
	Slide 27: Find the Driving Table
	Slide 28: Tune the Query
	Slide 29
	Slide 31: Adjust the index
	Slide 32: \
	Slide 34: Engineer out the Stupid
	Slide 35
	Slide 36: Best Average Time
	Slide 38: Entire Tuning Effects on Workload
	Slide 39: Summary
	Slide 40: More Stupid Things
	Slide 41: More Stupid Things
	Slide 42: Wait Events

