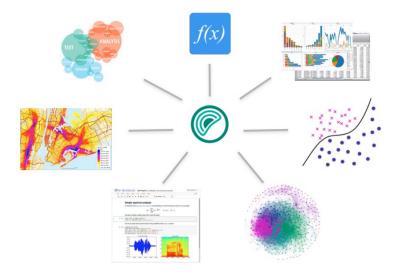
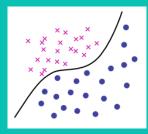

Pivotal

Machine Learning, Graph, Text and Geospatial on PostgreSQL and Greenplum

Frank McQuillan Bharath Sitaraman

© Copyright 2017 Pivotal Software, Inc. All rights Reserved. Version 1.0


Greenplum Integrated Analytics


Agenda

- 1. Machine learning with Apache MADlib
- 2. Data transformation
- 3. Graph
- 4. Data science productivity tools
- 5. Geospatial with PostGIS
- 6. Text analytics with GPText
- 7. Connectivity
- 8. Example use cases
- 9. Looking ahead

1. Machine Learning with Apache MADlib

MADlib

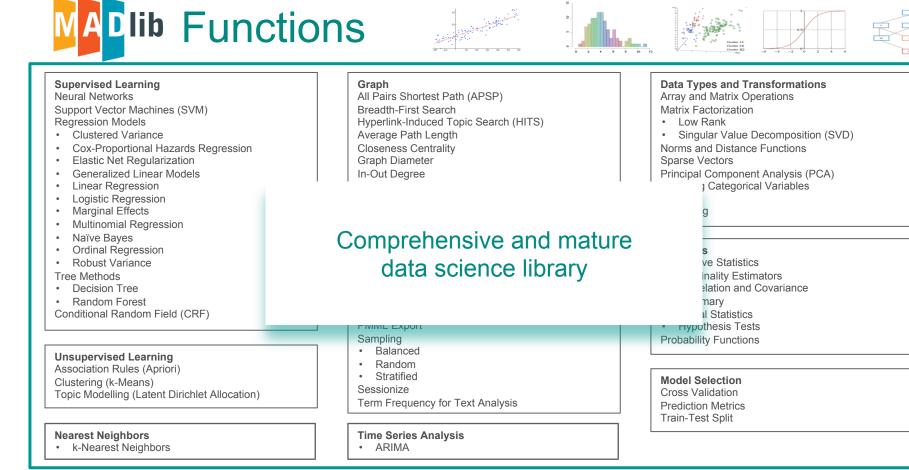
Scalable, In-Database Machine Learning

Apache MADlib: Big Data Machine Learning in SQL

Open source, top level Apache project For PostgreSQL and Greenplum Database Powerful machine learning, graph, statistics and analytics for data scientists

- Open source
- Downloads and docs
- Wiki

https://github.com/apache/madlib http://madlib.apache.org/ https://cwiki.apache.org/confluence/display/MADLIB/

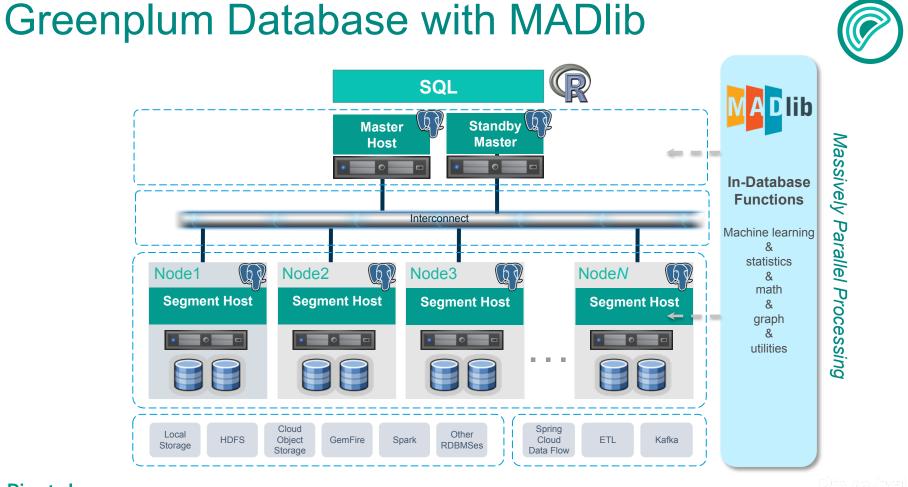


History

MADlib project was initiated in 2011 by EMC/Greenplum architects and Professor Joe Hellerstein from University of California, Berkeley.

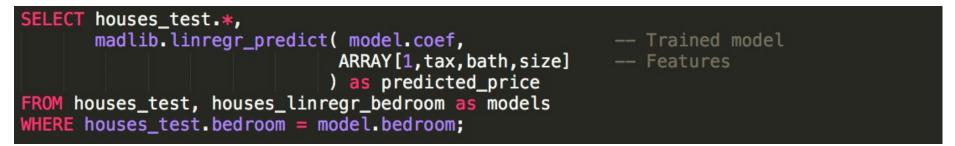
Pivotal

7


Why MADlib on Greenplum?

- Better parallelism
- Better scalability
- Higher predictive accuracy
- Top level ASF project

"Apache MADlib Comes of Age", Frank McQuillan, Oct. 2017, https://content.pivotal.io/blog/apache-madlib-comes-of-age


Familiar SQL Interface

Train (build a predictive model)

<pre>SELECT madlib.linregr_train(</pre>	<pre>'houses_linregr_bedroom', 'price',</pre>	— Variable to predict
	'ARRAY[1, tax, bath, size] 'bedroom' ;	<pre>', Features Diff models by #bedrooms</pre>

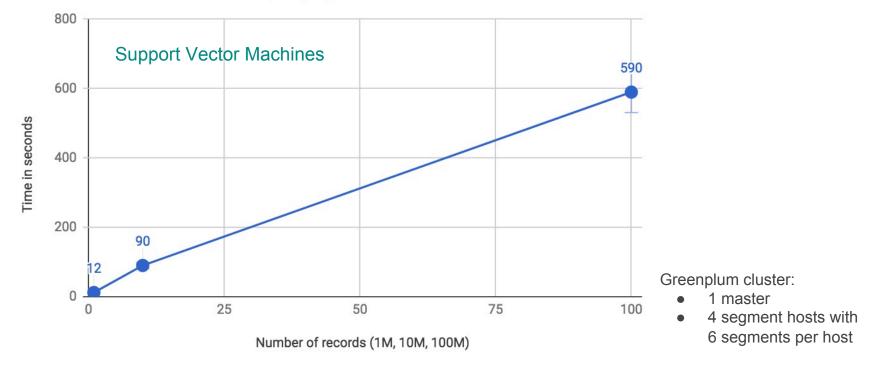
Predict (use model on new data)

Familiar SQL Interface

predicted_price bedroom bath id tax size lot 43223.5393423991 111527.609949684 20187.9052986334 99354.9203362624 124508.080626413 96640.8258367596 224650.799707329 2.5 138458.174652714 138650.335313723 62911.27521866 117007.693446415 189203.861766405 143322.539831872 1.5 82452.4386727394 etc...

Pivotal

From house pricing model



Built to Scale

Classification, 100 features, no grouping

Pivotal

2. Data Transformation

Native PostgreSQL Data Transformations

Samsung Galaxy Tab

(11 rows)

- Rich library of functions and operators
 - Array functions
 - Aggregate functions

Mindow function

	Z
	ノ

200.00 | Tablet

	- window functions	product_name	price	group_name	avg
price, group	_name, orice) OVER (PARTITION BY group_name)	HP Elite Lenovo Thinkpad Sony VAIO Dell Vostro Microsoft Lumia HTC One Nexus iPhone iPad Kindle Fire	1200.00 700.00 800.00 200.00 400.00 500.00 900.00 700.00 150.00	Laptop Laptop Laptop Smartphone Smartphone Smartphone Smartphone Tablet Tablet	850.0000000000000000 850.000000000000000

"Comparing Window Function Features by

Database Vendors", Jiri Mauritz, Sonra Intelligence, Sept. 15, 2017

Pivotal

350.0000000000000000

Array and Matrix Operations Conjugate Gradient Encoding Categorical Variables Linear Solvers

- Dense Linear Systems
- Sparse Linear Systems
 Matrix Factorization
- Low Rank
- Singular Value Decomposition (SVD)

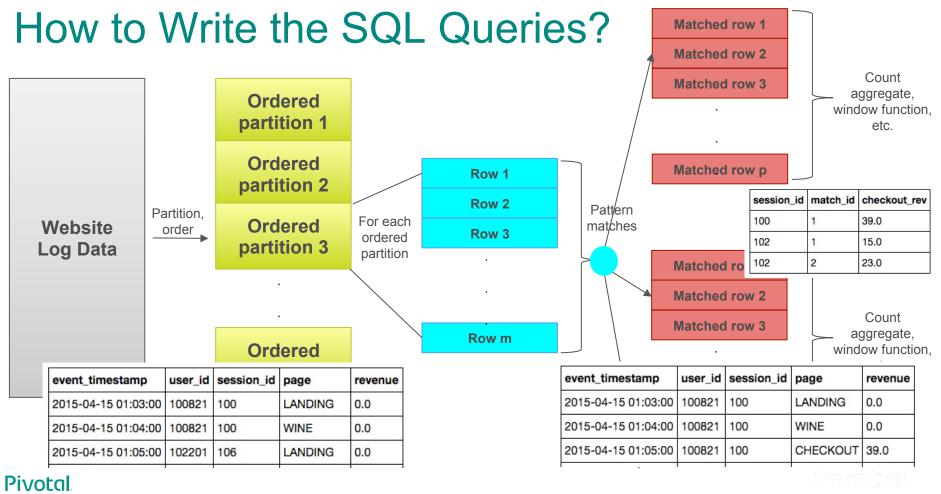
Norms and Distance Functions Path Pivot PMML Export Principal Component Analysis (PCA) Sampling • Balanced • Random • Stratified Sessionize Sparse Vectors

Stemming Term Frequency for Text Analysis

"New Tools To Shape Data In Apache MADlib", Frank McQuillan, Sept 2016, https://content.pivotal.io/blog/new-tools-to-shape-data-in-apache-madlib

Path Functions in E-commerce

Pivotal



Raw Data from Website Logs

event_timestamp	user_id	session_id	page	revenue
2015-04-15 01:03:01	100821	100		0
2015-04-15 01:03:14	100829	200	LANDING	0
2015-04-15 01:03:19	100839	300	LANDING	0
2015-04-15 01:04:00	100839	300	WINE	0
2015-04-15 01:04:00	100829	200	WINE	0
2015-04-15 01:04:21	100821	100	WINE	0
2015-04-15 01:05:00	100829	200	CHECKOUT	59
2015-04-15 01:05:00	102204	206	LANDING	0
2015-04-15 01:05:00	102224	306	LANDING	0
2015-04-15 01:05:01	100839	300	CHECKOUT	19
2015-04-15 01:05:21	102201	106	LANDING	0
2015-04-15 01:05:44	100821	100	CHECKOUT	39
2015-04-15 01:06:00	102224	306	HELP	0
2015-04-15 01:06:44	102201	106	HELP	0
etc				

Pivotal

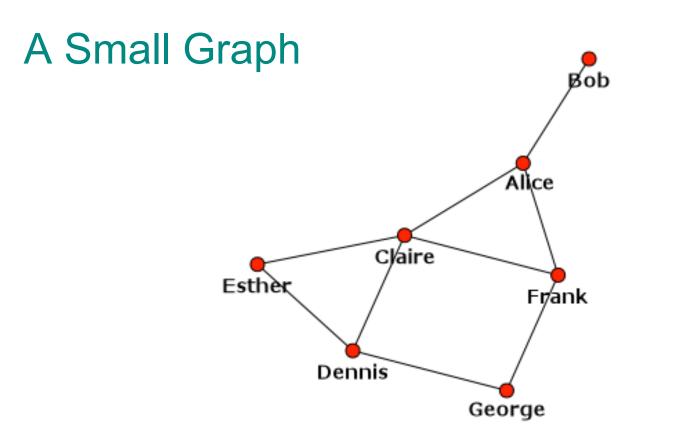
Pivolal.

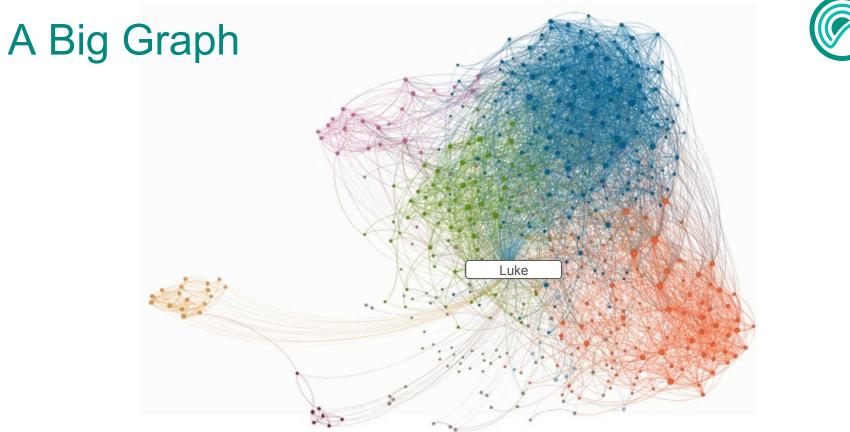
MADlib Path Functions

"Path Functions in Apache MADlib", Frank McQuillan, May 2016, https://content.pivotal.io/blog/path-functions-in-apache-madlib

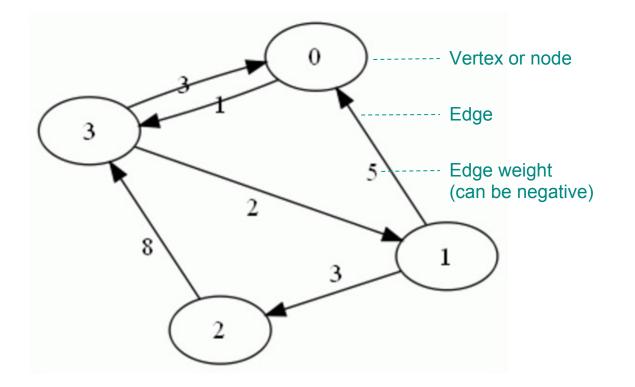
High Value Quick Shoppers

\frown		
user_id	session_id	checkout_rev
101163	302	75
100829	200	59
101123	202	55
100821	100	39
101163	302	33
101121	102	23
100839	300	19
101121	102	15
101123	202	13
etc		


Sorted descending by revenue


3. Graph

MPP databases are an effective tool for graph analytics at scale in enterprise



Sample LinkedIn social graph

Directed Graph

Graph Representation in MADlib

Vertex Table

Vertex	Vertex Params	
0		
1		
2		
3		

.

.

Edge Table

Source Vertex	Dest Vertex	Edge Weight	Edge Params
0	3	1.0	
1	0	5.0	
1	2	3.0	
2	3	8.0	
3	0	3.0	
3	1	2.0	

•

.

Pivotal

PageRank

- Web search
- Scientific impact of researchers
- Street and space usage

C 34.3%

• Neuroscience

E 8.1%

11

B 38.4%

Pivolal.

PageRank in MADlib

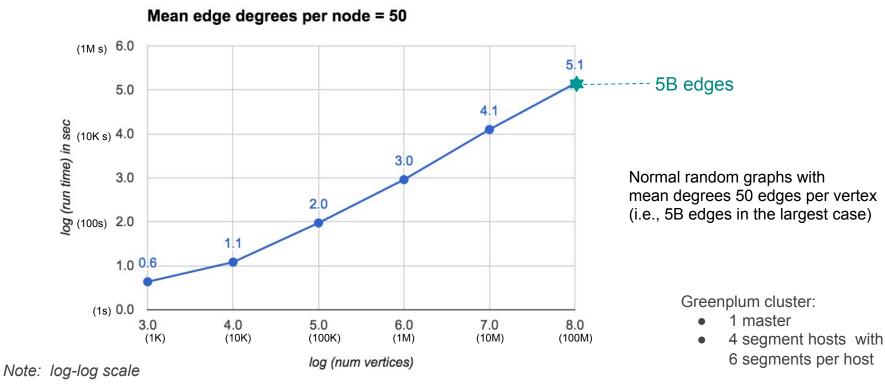
SELECT pagerank	(
	'vertex', 'id', 'edge',	 Vertex table name Vertex id column Edge table name
	'src=start_id, dest=end_id', 'pagerank_out'):	 Edge table name Edge source and dest columns Output table with PageRank

id	pagerank
0	0.287518161212111
3	0.210171199451415
2	0.146637377532288
4	0.102910437211324
1	0.102910437211324
6	0.0972746644343417
5	0.0525777229481976
etc	••••

Pivotal

Pivolal.

PageRank in MADlib



"Graph Processing on Greenplum Database using Apache MADlib", Frank McQuillan, Jan 2018, https://content.pivotal.io/blog/graph-processing-on-greenplum-database-using-apache-madlib

PageRank Performance on Greenplum

Pivotal

Pivolal.

4. Data Science Productivity Tools

PivotalR

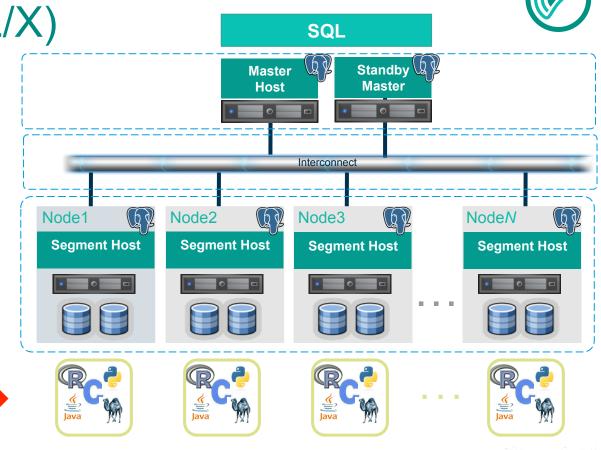
 Familiar R interface + performance/scalability of indatabase analytics

PivotalR

SQL Code

d <- db.data.frame("houses")
houses_linregr < madlib.lm(price ~ tax
 + bath
 + size
 , data=d)</pre>

No data here


Data Never Leaves DB

Data lives here

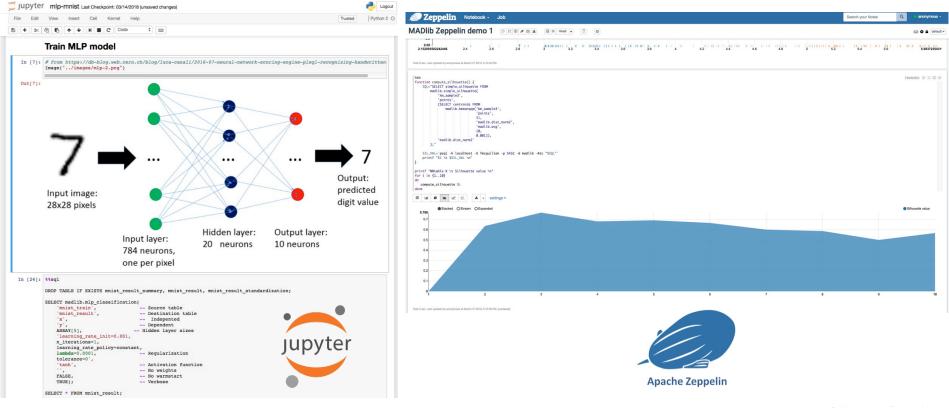
Procedural Language Extensions (PL/X)

- Write functions in Python, R, C, Java, pgsql, Perl
- Run on each segment in data parallel manner

PL/Container

- Execute functions in isolated secure containers
- Deploy code and functions as non super-user

"Customize and Secure the Runtime and Dependencies of Your Procedural Languages Using PL/Container"


Date: Duration: Room: Conference: Language: Track: 2018 April 20 08:50 50 min Liberty II-III PostgresConf US 2018 English Greenplum Summit

Pivotal

36

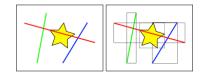
Data Science Notebooks

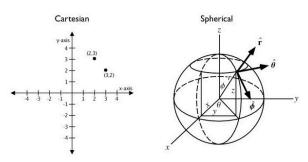
Pivotal

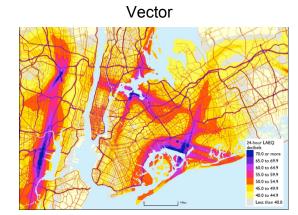
Pivolg||._

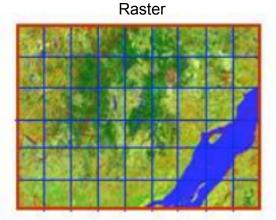
\bigcirc

5. Geospatial


Geospatial Analytics with




 PostGIS is a spatial database extension which allows for analysis and processing of GIS objects


Spatial Indexes & Bounding Boxes

Round earth calculations

Spatial Relationships & Joins

 ST_Equals ST_Intersects ST_Crosses ST_Disjoint ST_Overlaps ST_Touches 	geodemo=# SELECT nyc_subway_stations.long_name AS subway, nyc_neighborhoods.name AS neighborhood FROM nyc_neighborhoods JOIN nyc_subway_stations ON ST_Contains(nyc_neighborhoods.geom, nyc_subway_st WHERE nyc_neighborhoods.name = 'Greenwich Village'; subway	tations.geom) neighborhood
 ST_Within ST_Contains Spatial joins use spatial relationships as the join key Example: Subway stations: POINT Neighborhoods: MULTIPOLYGON 	W 4th St (B,D,F,V) Manhattan 14th St / Union Sq (4,5,6) Manhattan 14th St (1,2,3) Manhattan Bleecker St / Broadway-Lafayette St (6) Manhattan Christopher St / Sheridan Sq (1) Manhattan Union Sq / 14th St (L,N,Q,R,W) Manhattan 6th Ave / 14th St (F,L,V) Manhattan 8th St / New York University (N,R,W) Manhattan Astor Pl (6) Manhattan W 4th St (A,C,E) Manhattan (10 rows)	Greenwich Village Greenwich Village Greenwich Village Greenwich Village Greenwich Village Greenwich Village Greenwich Village Greenwich Village Greenwich Village Greenwich Village

From Introduction to PostGIS, http://workshops.boundlessgeo.com/postgis-intro/

6. Text

The State of Unstructured Data

"...most industry experts agree that **80% to 90% of the world's data** *is unstructured*. Yet, only 0.5% is effectively analyzed and used today.

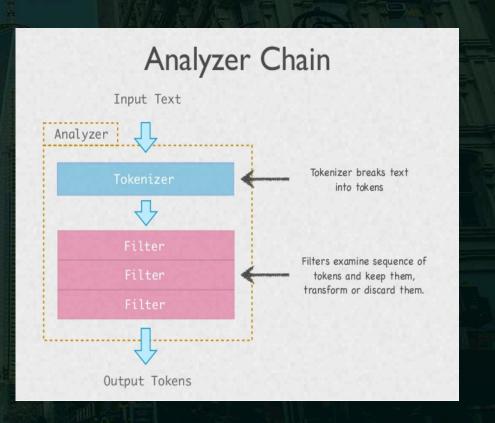
In the business world, most unstructured data lies in **customerrelated text**...Done right, extracting valuable predictive insights from huge quantities of text takes just **seconds**."

Osvaldo Driollet (PhD), Sr. Data Scientist, FICO

GPText Overview

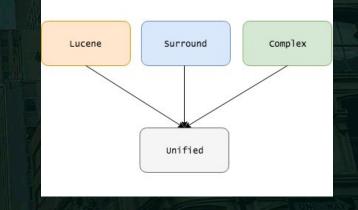
- GPDB + Apache Solr (+ MADLib!)
 - Only DB that integrates text at scale
- Combination of semi-structured and structured data
- Process mass quantities of raw text for large-scale analytics
- Exposed as SQL UDFs

GPText Index


- Efficient Storage
 - Word, Position, Synonyms, Stem,
 - Relevancy, Emoticons
- Fast Search
 - Indexed, not Scanning
- Relevant Results

$\operatorname{tfidf}(t, d, D) = \operatorname{tf}(t, d) \times \operatorname{idf}(t, D)$

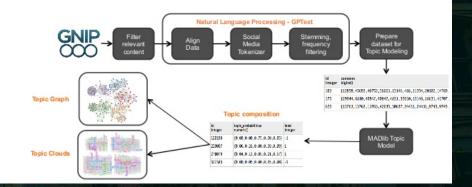
Analyzer Chains


- Document formats are NOT standard
 - International, Social Media, Logs, etc.
- Parse and Extract without losing meaning!

Unified Query Parser

- Designed to support multifaceted queries
 - Boolean
 - Proximity
 - Wildcard
- No need to write multiple individual queries with joins

KS CO FFEE

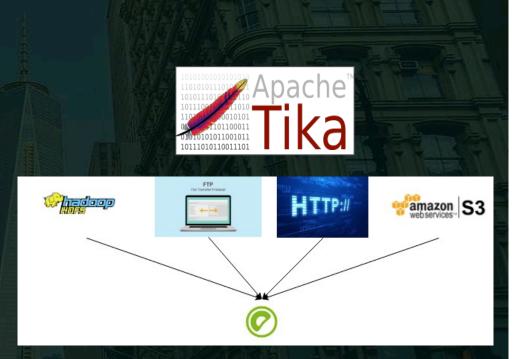

SELECT l.id, l.score, r."TO"
FROM gptext.search(
 TABLE(SELECT 1 SCATTER BY 1),
 'demo.public.enron',
 '{!gptextqp} content:2w(Phillips Petroleum)
 AND to:"Christine Stokes"
 AND date:["2000-01-01T00:00:00Z" TO "2001-01-01T00:00:00Z"]',
 NULL) l,
 enron r WHERE l.id=r.id;

GPText + MADLib

Integrated with MADLib

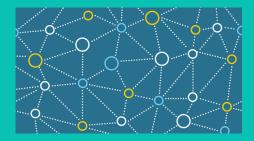
- Topic Modeling
- Clustering
- Sentiment Analysis
- Sequence Pattern Mining

Topic Analysis – MADlib pLDA

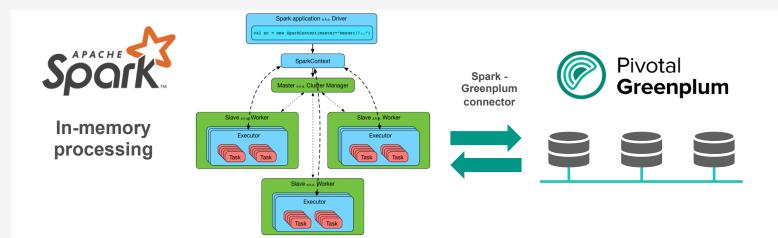


External Indexing

- Ability to connect to external data sources
 - Currently: HTTP, HDFS
 - Planned: FTP, S3
- Index and Store raw files (PDF, Word, Mail, etc.)


KSCOFFEE

Access and search your data, no matter where, no matter what.



\bigcirc

7. Connectivity

Greenplum - Spark Connector

- Provide Data Access to Greenplum Data
- Leverage SPARK Skill Set of Data Scientists
- Use off-cluster resources to do computations
- Push result sets back into Greenplum for storage

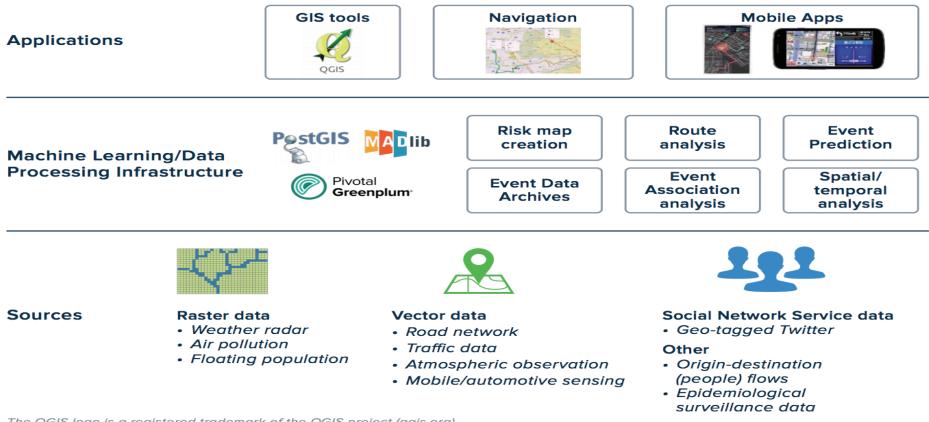
FAST Pivotal **GemFire** Transactional Analytical GemFire/Greenplum parameters **Bi-Directional** data Connector Write behind to cache **Direct Connection GemFire and Greenplum Segment** Servers <u>Big</u> **Pivotal** Greenplum

Hot

Data Temperature

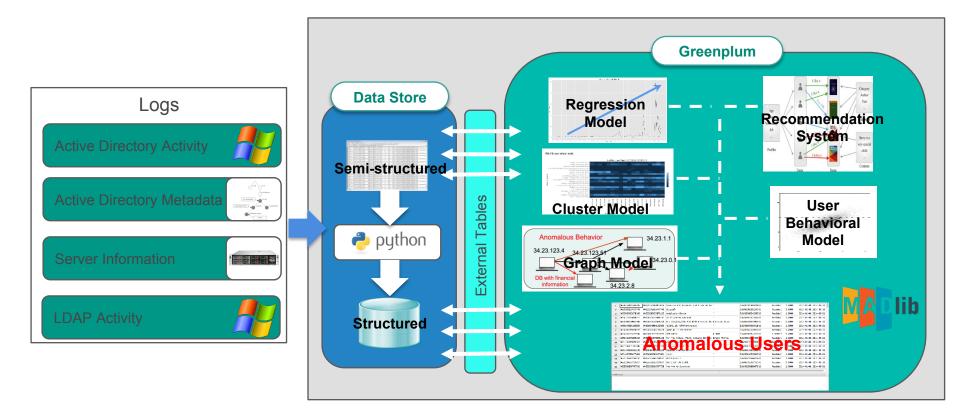
Warm

Seamlessly share data between GemFire and Greenplum


Pivotal Greenplum[•]

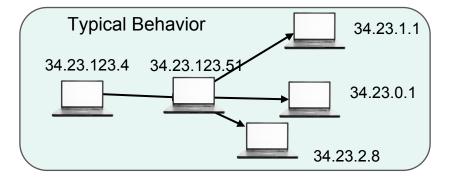
8. Example Use Cases

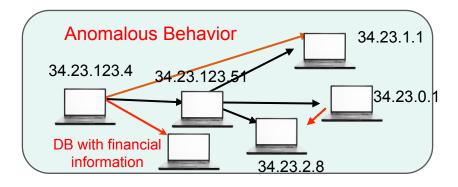
Event Data Warehouse (EvDW) System Architecture


The QGIS logo is a registered trademark of the QGIS project (agis.org).

Operations - Parts Monitoring

- Monitoring 100s of different models + parts
- Structured Data + Operator Notes
- Minimized Recall Risk and Improved Reliability

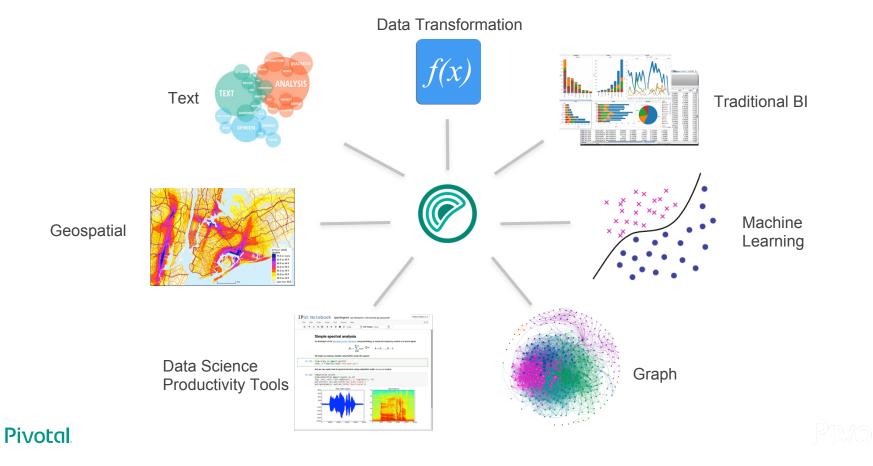

Cyber Security - Lateral Movement Detection



https://content.pivotal.io/blog/better-threat-detection-and-responsewith-analytics-for-lateral-movement

Cyber Security (continued)

- Using historical window events data to build graphs of typical user behavior*
- Is this behavior typical?
- Graph models are sensitive to direction, order, and frequency.


*Reference: Alexander D. Kenta, Lorie M. Liebrock, Joshua C. Neila. *Authentication graphs: Analyzing user behavior within an enterprise network.*

\bigcirc

9. Looking Ahead

Greenplum Integrated Analytics

Thank you!