Ev‘.v’ (@ citusdata

. .‘ Distributing Queries the
>

Citus Way

Fast and Lazy
L‘A

Marco Slot <marco@citusdata.com>

What is Citus?

Citus is an open source extension to Postgres (9.6, 10, 11) for transparently
distributing tables across many Postgres servers.

data_1

data_4

Coordinator

create_distributed _table('data’,

data
data_2 data_3
data_5 data_6

Marco Slot | Citus Data | PostgresConf US 2018

"tenant_id');

@ citusdata

How does Citus work?

Citus uses hooks and internal functions to change Postgres’ behaviour and
leverage its internal logic.

SELECT ...

planner — _
custom scan ——— Citus

|
l

standard _planner

Postgres

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Different use cases for scaling out

There are different use cases that can take advantage of distributed
databases, in different ways.

Examples:
* Multi-tenant SaaS app needs to scale beyond a single server

* Real-time analytics dashboards with high data volumes
* Advanced search across large, dynamic data sets
* Business intelligence

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Citus planner(s)

Layered planner accommodates different workloads.

Router planner Multi-tenant OLTP

Pushdown planner Real-time analytics, search

Real-time analytics, data

Recursive (Subquery/CTE) planning warehouse

Logical planner Data warehouse

Marco Slot | Citus Data | PostgresConf US 2018 @CItUSdCﬂq

Citus planner(s)

Layered planner accommodates different workloads.
Multi-tenant OLTP

.\ Users /
Real-time analytics, search

Real-time analytics, data

[
nooy
oy
Py
Iy [
ooy ;1
‘W Query
1 [;!
1 Vo ;o \
1 LY P [
' .. Rate // i A
1 [;o Vo h
l Vo ;1 Vo ;1
1 v] v]
1 LY ;1 vy ;1 vy
1 L P [P [
] [;1 [N] [N
! Vo 0! Vo 0! Vo 1
! P [P [P [
! P [P [P 1
1 Vo ;! Vo ;o Vo h
1 Vo T Vo ;o Vo h
1 [N ;1 LY ;! LR 1
1 vy ;1 LY ! Vo 1
1 Vo 1 Vo ;o Vo h
l Vo ;1 Vo ;o Vo h
] LY ;! LY ! Vo 1
1 LY ;! LY ! AR]
1 LY ;! Vo ! Vo]
1 [;! Vo ;o Vo h
/ vy vy S Ly warehouse
[N ;! Vo ! A [
LY ;1 vy " Vo 1
[;1 vy ;1 Voo 1
L/ Que v/ /Complex '\
Vo ! Vo ! Vo 1
[Vo [LY 1
1 - \ \ 1 1 \ \ 1
fime '/, Que VL
Vv VoL dla warenouse
Vo Vo
Vo ! Vo
Vo ! LY
L [

1
1
' Data
LY
A 1
\ ;1
1

1

; Size ./,

l’ \\ ‘\ I’ l’

[S —— | SRR R ‘u’ e e e e e e e -
Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Co-located distributed tables

Tables are automatically assigned to co-location groups, which ensure that

rows with the same distribution column value are on the same node.

orders_1

Foreign keys

¥

products_1

orders_2

>< Joins

products 2

orders_3

l Rollups

products 3

This enables foreign keys, direct joins, and rollups (INSERT...SELECT) that
iInclude the distribution column.

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Reference tables

Reference tables are replicated to all nodes such that they can be joined with

distributed tables on any column.

orders_3

products 3

orders_1 orders 2

products_1 products 2
>< Joins >< Joins

category_1 category_1

>< Joins

category_1

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Router planner

How to be a “drop-in” distributed database

@ citusdata

10

Routable queries

Technical observation:

If a query has <distribution column> = <value> filters that

(transitively) apply to all tables, it can be “routed” to a particular node.

Efficiently provides full SQL support, since full query can be handled by

Postgres.

SELECT ...

1]
1]

1]
1]

1]
1]

@ citusdata

11

Routable queries

Technical observation:

If a query has <distribution column> = <value> filters that

(transitively) apply to all tables, it can be “routed” to a particular node.

Efficiently provides full SQL support, since full query can be handled by

Postgres.

1]
1]

Return

/

1]
1]

1]
1]

@ citusdata

12

Scaling Multi-tenant Applications

Use case observation:

In a SaaS (B2B) application, most queries are specific to a particular tenant.

Can add tenant ID column to all tables and distribute by tenant ID.

Most queries are router plannable:
Low overhead, low latency, full SQL capabilities of Postgres, scales out

Marco Slot | Citus Data | PostgresConf US 2018 @C"Uqutq

13

Router planner with explicit filters

Can explicitly provide filters on all tables:

SELECT app_id, event time

FROM (

SELECT tenant_id, app id, item name

FROM items

WHERE tenant id = 1783 I
) All distributed tables have filters by the
LEFT JOIN (same value

SELECT tenant _id, app _id, max(gfent time) AS event time
FROM events

WHERE tenant id = 1783

GROUP BY tenant id, app_id

)
USING (tenant_id, app_id) ORDER BY 2 DESC LIMIT 10;

@ citusdata

14

Router planner with inferred filters

Citus can infer distribution column filters from joins:

SELECT app_id, event time
FROM (
SELECT tenant id,
FROM items
WHERE tenant id = 1783 <

pp_id, item_name

Filter on orders can be inferred from
joins
vent _time) AS event_ time

)
LEFT JOIN (

SELECT tenant id,
FROM events
GROUP BY tenant id, ap

)

USING (tenant_id, _id) ORDER BY 2 DESC LIMIT 10;

@ citusdata

Marco Slot | Citus Data | PostgresConf US 2018

15

Extracting relation filters

What does Citus need to do to infer filters?
Be lazy and call the Postgres planner:
planner()

-> citus_planner()
-> standard_planner()

Obtain filters on all relation from Postgres planning logic

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Pushdown planning

Make your workers work

@ citusdata

Distributed queries

Technical observation:

Most common SQL features (aggregates, GROUP BY, ORDER BY, LIMIT)

can be distributed in a single round.

SELECT ... —

17

SELECT ...

1]
1]

1]
1]

SELECT ...

1]
1]

@ citusdata

Distributed queries

Technical observation:

Most common SQL features (aggregates, GROUP BY, ORDER BY, LIMIT)

can be distributed in a single round.

18

1]
1]

Merge

1]
1]

1]
1]

@ citusdata

19

Merging query results

Get the top 10 pages with the highest response times:

SELECT page_id, avg(response time)
FROM page views

GROUP BY page id

ORDER BY 2 DESC

LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Queries on shards

Queries on shards when page id is the distribution column:

|
|
[
SELECT page_id, avg(response time) e B
FROM page views 102008
GROUP BY page id 1 B
ORDER BY 2 DESC e
LIMIT 10 —
[

Marco Slot | Citus Data | PostgresConf US 2018 @C"USdatq

21

Merging query results

When page_id is the distribution column: get top 10 of top 10s.

SELECT page id, avg
FROM

——

__

ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

1]
1]

1]
1]

1]
1]

@ citusdata

Queries on shards

Queries on shards when page id is not the distribution column:

|
|
i —
SELECT page id, sum(response_time), e B
count(response time)

FROM page views 102008 B
GROUP BY page id e

i —

i —

Marco Slot | Citus Data | PostgresConf US 2018 @C"USdatq

23

Merging query results

When page id is not the distribution column: merge the averages

SELECT page id, sum(sum) / sum(count)
FROM

——

__

GROUP BY page id
ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

1]
1]

1]
1]

1]
1]

@ citusdata

24

What about subqueries?

Instead of a table, we can have joins or subqueries:

SELECT page id, response time

FROM (

SELECT page_id

FROM pages

WHERE site = 'www.citusdata.com'
) P
JOIN (

SELECT page_id, avg(response time) AS response time
FROM page views
WHERE view time > date '2018-03-20' GROUP BY page id
) Vv
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

@ citusdata

http://www.citusdata.com

25

Distributed queries

Technical observation:
A query that joins all distributed tables by distribution column with

subqueries that do not aggregate across distribution column values
can be distributed in a single round.

Marco Slot | Citus Data | PostgresConf US 2018 @C"USdatq

26

Pushdown planner

Determine whether distribution columns are equal using Postgres planner:

SELECT page _1id, response_time

FROM (

SELECT page_id

FROM pages

WHERE site = "www.citusdata.
) p Distribution column equality
JOIN (

SELECT page_id,
FROM page views
WHERE view time > da
) v
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

g(respons 1me) AS response_time

'2018-03-20" GROUP BY page_id

Marco Slot | Citus Data | PostgresConf US 2018 @CItUSdCﬂq

27

Pushdown planner

Subquery results need to be partitionable by distribution column:

SELECT page _1id, response_time

FROM (
SELECT page_id No aggregation across distribution
FROM pages column values.
WHERE site = 'www.citusdata.com'
) p \
JOIN (
SELECT page_id, avg(response time) AS responsg time

FROM page views

WHERE view time > date '2018-03-20' GROUP BY page id
) v
USING (page_id)
ORDER BY 2 DESC LIMIT 10;

@ citusdata

Marco Slot | Citus Data | PostgresConf US 2018

28

Pushdown planner

Subqueries can be executed across co-located shards in parallel:

SELECT page id, response_ time
FROM (

SELECT page id

FROM pages 102670

WHERE site = "www.citusdata.com’
)
JOIN (

SELECT page_id, avg(response time) AS response_ time

FROM page views 102008

WHERE view time > date '2018-03-20"' GROUP BY page id
)
USING (page_id)
L{ORDER BY 2 DESC LIMIT 10;

1]
1]

1]
1]

/N

1]
1]

@ citusdata

29

Merging query results

Merge the results on the coordinator:

SELECT page id, response_time
FROM

——

__

ORDER BY 2 DESC
LIMIT 10

Marco Slot | Citus Data | PostgresConf US 2018

1]
1]

1]
1]

1]
1]

@ citusdata

30

Scaling Real-time Analytics Applications

Use case observation:

Real-time analytics dashboards need sub-second response time,
regardless of data size.

Single-round distributed queries are powerful, fast and scalable.

In practice:
° Maintain aggregation tables using parallel INSERT...SELECT
* Dashboard selects from the aggregation table

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

31

Complex subqueries

What about subqueries with merge steps?

SELECT
product name, count
FROM
products
JOIN (
SELECT product_id, count(*) FROM orders GROUP BY product id
ORDER BY 2 DESC LIMIT 10
) topl@ products
USING (product_id)
ORDER BY count;

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

Recursive planning

Have a query you can't solve? Call the Postgres planner!

@ citusdata

33

Recursive planning

Technical observation:

Subqueries and CTEs that cannot be pushed down can often be
executed as distributed queries.

Pull-push execution:
- Recursively call planner() on the subquery

- During execution, stream results back into worker nodes
- Replace the subquery with a function call that acts as a reference table

Marco Slot | Citus Data | PostgresConf US 2018 @C"USdatq

34

Recursive planning

Separately plan CTEs and subqueries that violate pushdown rules:

SELECT
product name, count
FROM
products
JOIN (
SELECT product_id, count(*) FROM orders GROUP BY product id
ORDER BY 2 DESC LIMIT 10
) topl@ products
USING (product_id)
ORDER BY count;

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

35

Recursive planning

In the outer query, replace subquery with intermediate result, treated as
reference table:

SELECT
product name, count
FROM
products
JOIN (
SELECT * FROM read_intermediate _result(...) AS r(product_id text, count int)
) topl@ products
USING (product _id)
ORDER BY count;

@ citusdata

Marco Slot | Citus Data | PostgresConf US 2018

36

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_id, count(*) FROM orders GROUP BY product id ORDER BY 2 DESC

LIMIT 10

SELECT ...

SELECT ...

SELECT ...

Marco Slot | Citus Data | PostgresConf US 2018

1]
1]

1]
1]

1]
1]

@ citusdata

37

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_id, count(*) FROM orders GROUP BY product id ORDER BY 2 DESC

LIMIT 10

Merge

Marco Slot | Citus Data | PostgresConf US 2018

1]
1]

1]
1]

1]
1]

@ citusdata

38

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product_id, count(*) FROM orders GROUP BY product id ORDER BY 2 DESC

LIMIT 10

Results

Marco Slot | Citus Data | PostgresConf US 2018

1]
O 3

—
O ==

—
O ==

@ citusdata

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product _name, count FROM products JOIN (SELECT * FROM
read _intermediate result(...) ...) ...;

1]
O 3

SELECT ...

—
O ==

—
O ==

SELECT ...

Marco Slot | Citus Data | PostgresConf US 2018 @C"USdatq

40

Pull-push execution

Execute non-pushdownable subqueries separately:

SELECT product _name, count FROM products JOIN (SELECT * FROM

read _intermediate result(...) ...) ...;

1]
1]

Merge

1]
1]

1]
1]

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

4

Recursive planning

Different parts of a query can be handled by different planners.

SELECT ...

Router

SELECT ...

Pushdownable

SELECT ... SELECT ...
Pushdownable Local

@ citusdata

42

Joins between tables and intermediate results

Technical observation:

Intermediate results of CTEs and subqueries are treated as reference
tables: can use any join column.

WITH
distributed query AS (...)
SELECT

distributed query JOIN distributed table USING (any column)

Marco Slot | Citus Data | PostgresConf US 2018 @C“USdatq

43

Joins between intermediate results

Technical observation:

Queries with only intermediate results (CTEs or subqueries) are router
plannable: full SQL in a single round-trip.

WITH

distributed query 1 AS (...),

distributed query 2 AS (...) Can use any SQL feature without
SELECT / further merge steps

distributed query 1 ... distributed _query 2

Marco Slot | Citus Data | PostgresConf US 2018 @C"USdatq

44

Scaling Real-time Analytics Applications

Use case observation:
Real-time analytics applications want versatile distributed SQL support

Recursive planning provides nearly full, distributed SQL support in a small
number of network round trips.

Marco Slot | Citus Data | PostgresConf US 2018 @C“USdatq

45

Logical planner

Handling non-co-located joins through relational algebra

@ citusdata

Non-co-located joins

Business intelligence queries may join on non-distribution columns.

SELECT

product_id, count(*) Distributed by product_id
FROM

shopping carts JOIN products USING (product id)
WHERE

shopping carts.coun = 'US' AND products.category = 'Books’

GROUP BY

product_id; Distributed by customer _id for fast

lookup of shopping cart

@ citusdata

Marco Slot | Citus Data | PostgresConf US 2018

47

Distributed query optimisation

Apply operations that reduce data size before re-partitioning.

GROUP BY:
product_id

Project
product_id

Filter:

country = 'US'

Join by
product_id

Filter:

Re-partition by

category = 'Books' product_id
Table: Table:
products shopping_carts

Join by
product_id
GROUP BY: Re-partition by
product_id ___product id
Filter: GROUP BY:
category = 'Books’ product_id
Table: Project
products product_id
Filter:
country = ‘'US’
Table:

shopping_carts

@ citusdata

48

Re-partitioning

Split query results into buckets based on product_id

SELECT partition_query result($$
SELECT product_id, count(*) FROM shopping carts_ 1028 WHERE country = 'US"
GROUP BY product_id

$$, 'product id');

SELECT ...

SELECT ...

@ citusdata

49

Re-partitioning

Fetch product_id buckets to the matching products shards.

SELECT fetch file(...);

SELECT ...

SELECT ...

@ citusdata

50

Re-partitioning

Join merged buckets with products table

SELECT product_id, count FROM fragment 2138 JOIN products 102008 USING
(product_id) WHERE products.category = 'Books’;

SELECT ...

Jop ooy o

SELECT ...

@ citusdata

51

Join order planning

Joins across multiple tables should avoid re-partitioning when unnecessary:
orders JOIN shopping carts JOIN customers JOIN products

Bad join order:

orders x shopping_carts — re-partition by customer id
join result x customers — re-partition by product id
join result x products — query result

Good join order:
shopping_carts x customer — re-partition by product_id
join result x orders x products — query result

Marco Slot | Citus Data | PostgresConf US 2018 @CItUSdCﬂq

52

Evolution of distributed SQL

CitusDB:

Citus 5.0:
Citus 5.1:
Citus 5.2:
Citus 6.0:
Citus 6.1:
Citus 6.2:
Citus 7.0:
Citus 7.1:
Citus 7.2:
Citus 7.3:
Citus 7.4:

Joins, aggregates, grouping, ordering, etc.
Outer joins, HAVING

COPY, EXPLAIN

Full SQL for router queries

Co-location, INSERT...SELECT
Reference tables

Subquery pushdown

Multi-row INSERT

Window functions, DISTINCT

CTEs, Subquery pull-push

Arbitrary subqueries

UPDATE/DELETE with subquery pushdown

(2016)

(2017)

(2018)

Marco Slot | Citus Data | PostgresConf US 2018

@ citusdata

53

Thanks!

marco@citusdata.com

@ citusdata

