
Postgres in Dockers on ZFS

Background and brief history

● Kobus Wolvaardt and I work at GoodX Software
● GoodX is a medical practice management ERP, CRM and EMR
● 1985 DOS pascal app, 2001 Delphi app on Windows
● 2006 Started moving from file data to PostgreSQL
● Local app and postgres deployments on 500 to 1000 sites (much pain)
● Cloud meant a windows machine in a DC over RDP running Delphi app
● 2013-2017 Business logic moved into database
● 2018 Python based web application launched (cloud solution)
● Growth of centrally hosted Postgresql dbs accelerated

How it grew from there

● Move postgres to Linux (postgres 8.4 performed badly on Windows)
● Put a couple of DBs in one cluster
● Run into performance issues -> buy more CPU and bigger/faster SSDs
● Put more DBs in one cluster
● Run into performance issues -> this time build some indexes :-) and buy

more hardware
● Put some more DBs in the cluster
● Rinse repeat

Other design decisions

● Business logic inside the DB
● Printing was moved into DB functions with wkhtmltopdf
● HTML is bad at printing thus latex was installed
● HTTP requests made from plpython3u with requests library (and other

things)

Problems

● Back when we ran into DB size issues >1TB SSDs cost $2000+
● Database count went up to 200 per cluster

○ Setting shared memory to 128GB (of 512GB)
○ Connection count set to 8000 and even 10000
○ One DB doing a long running query could push the whole machine over the edge
○ Soooo much money for SSDs

● Clusters started going over a TB each
○ Basebackups take forever
○ Backups take forever

More problems

● Python http requests would lock, killing them would result in cluster restart
● Wkhtmltopdf and latex packages and versions broke stuff
● Developer package choices dictated DB server OS and environment
● Security updates would restart postgres service (with all clusters) and

break printing

ZFS - the what, why and the how

● Copy on write FS
● Each change to a block (even a single byte) results in the whole block being rewritten
● Consistent block state guaranteed
● Encryption, Compression and RAID built into FS (not block layer)
● ZFS has a ZIL where it can burst to fast drives (change log, kind of like WAL files)
● ZFS snapshots can be pushed and applied (almost like Postgres replication)
● Snapshots are cheap to make and mount
● Relatively easy raid (zraid1 and zraid2) that performs well
● ZFS has ARC cache to which fast SSD drives can be assigned
● Enterprise ready and widely deployed
● What could possibly go wrong?

Our first ZFS machine

● We needed replicas so we built 144TB 12x12TB spin disk (raidz2)
machines for each DC

● Each live machine was replicated to a cluster on this machine
● Testing this machine showed decent performance
● The two replica servers pushed ZFS snapshots hourly, between them.

○ Networks in SA were very expensive until recently and replicating in real time was not
feasible

ZFS - the good

● Hourly and daily snapshots going back months
● Seconds to restore (clone)
● No more copying and backing up and downtime for backups to complete
● We could build large clusters with cheap spin disks
● Zraid2 performs well and is really simple to manage
● Decent performance
● Backups and restore is very easy
● Compression built in
● Did I mention backups is a non issue?

ZFS - the bad (and the ugly)

● SSDs and ZFS don't play well
○ SSDs are liars (they lie about true block size)
○ The “copy on write” results in massive write amplification
○ We were expecting our 12 SSD machine to be faster than our 12 hdd machine
○ We put our most difficult and demanding client on it. Expecting a great day, the cluster just died!
○ Spin disks out performed SSDs with default setup (after some tweaking SSD were about equal to

spin disks)
● ZFS has thrown a hissy fit at least three times, saying more than half of disks are

broken and after a reset it seems only one was broken
● Resilvering a failed disk is stupidly slow. (Rebuilding a broken disk)

○ 20 to 45 days
○ Add SSDs for ZIL and caching… then it is just slow: 2 to 10 days

ZFS settings

● Setup the block size (recordsize) to match postgres (8kb or 16kb)
● ZFS (and most copy on write filesystems) guarantee atomic writes

○ Can set full_page_writes = off
○ Can turn wal_init_zero off as the zeros will not actually be overwritten in a CoW fs

● Disable atime
● Enable compression (zstd)
● Consider tweaking the primarycache (we use ‘all’)
● Set logbias=’latency’ (‘throughput’ results in fragmentation)

Docker - the why and how

● Devops drove our use of dockers
○ Instead of create DB -> restore DB -> apply migrations -> Run automated tests / dev cycle
○ Inherit postgres layer -> install needed packages -> build layer with base DB and data

■ Spin up docker (with no time to apply base DB and data) -> apply migrations -> Run tests
■ Great for automated tests
■ Near instant spin up
■ Concurrent DBs can be spun up, each in a docker subnet (very easy config)

● While discussing our sysadmin troubles docker was suggested
● We also had to update from 9.5 to 12 (some time ago)

○ We decided to break large clusters into smaller +-20 DB clusters (max 2000 connections)
● What could possibly go wrong?

Docker - benefits

● Environment consistent (wkhtmltopdf and latex is always correct)
● Installing custom and our own pg extensions in the docker makes life easy
● Upgrades can now be done one cluster at a time
● Postgresql.conf and hba.conf and everything lives in the data folder

○ Base backups copies config with
○ One directory contains it all, config and data
○ Snapshots also snapshots config (nice for investigations)

Docker - issues

● Logging is a bit different and needed to be setup correctly
● Shared memory default to low in dockers, had to set higher than shared

buffers

Other Postgres settings

● Stats collector directory should be RAM disk (slow spin disks and ZFS)
● sync_commit = ‘off’

○ We’re not a bank and if 500ms or even 2 seconds goes lost with a server crash we will take
it.

● Checkpoint = 15 to 30 minutes reduced IO
○ Slow recovery time after a crash
○ We really don't have crashes often
○ Waiting 10 minutes for a cluster to start is not that bad

What next?

● Having broken up the clusters into many smaller clusters
● Replica machines worked great until we needed them

○ Replication needs to be turned off when using it as a live machine
● Network speeds/costs improved
● New architecture was decided on:

○ ZFS and docker everywhere
○ Lower machine utilization with easier failover

● Upgrading to postgres 16 sometime

DC2DC1

Next/Current architecture

Machine A Machine C

Machine B Machine D

3 to 4 clusters of max 20 databases per cluster replicating two directions
Each group of 4 forms a redundant cluster

Thanks

● We are idiots, and still learning… hope this is of use
● Welcome to find me afterward and ask anything or please tell us where we

are being silly
● Much of what we do is because we really have to manage costs to host

many tiny doctor practices
● Our typical machine is Dell 730 12 drive (4 or 8 TB) 768GB ram and

36c/72t CPU we have more than 30 such machines with around 100
clusters and almost 2200 databases

